Team
HomeAide

Final Report

Version 1.0

April 27, 2021

Project Sponsors: Kelly Roberts, PH. D and Jill Pleasant, MA
Team Faculty Mentor: Fabio Santos

Team members: Seth Borkovec, Ethan Donnelly, Courtney Richmond, Noah Baxter

Table of Contents

Introduction
Process Overview

Requirements
Functional Requirements
Non-Functional Requirements
Environmental Requirements

Architecture and Implementation

Architecture Overview
Implementation

Mobile Application

Website

Database

Apache2

Azure Cloud Server and Virtual Machine
As-Planned Versus As-Built

Testing

Project Timeline
Future Work
Conclusion
Glossary

Appendix A: Development Environment and Toolchain
Microsoft Windows
Ubuntu Linux

o N o AN

10

13
13
14
15
17
17
18

21
25
29
32
33

34
35
39

|. Introduction

In the United States alone, the number of individuals who are age 60 and over is more than
65,000,000 people and of those - nearly 23,000,000 have at least one identified disability they
are living with. Taking this into consideration, there are thousands of Assistive Technology (AT)
products that can enable persons with disabilities and those experiencing aging-related
limitations to be more productive and self-sufficient in daily activities. These items range from
simple to complex, inexpensive to costly and commercially available to customized. Devices
can be used at home, work, school, or in the community to reduce barriers, enhance
participation and increase or regain independence.

Assistive technology devices help people to compensate for lost function. For example, a
flashing light doorbell alert can be used by a deaf person to let them know that someone is at
their door, or assistive technology can be used to enhance and support a declining ability —
installing grab bars in the bathroom so that a person with poor balance can use the toilet without
falling. High tech wheelchairs with sophisticated controls allow people with paralysis to be
independently mobile and even drive vehicles. Small speech generating tablet devices produce
speech for people unable to talk as a result of brain injuries, strokes, cerebral palsy and autism.

Market-wise the Assistive Technology market is expected to reach $26 billion by 2024 which is
almost doubled in size compared to $14 billion in 2015. There is a great need for these devices
in people’s homes as well as a consumer need for learning what’s available and useful to the
person who needs it.

Our sponsor is Northern Arizona University’s Institute for Human Development (IHD). IHD is one
of NAU'’s oldest Institutes and focuses its research, teaching, training/technical assistance
initiatives, community service and dissemination efforts on issues that affect persons with
disabilities across the age span. As a federally designated University Center for Excellence in
Developmental Disabilities, emphasis is placed on advancing positive attitudes, universal
access and full inclusion in all aspects of life for people with intellectual and developmental
disabilities.

Leading the IHD team of more than 45 staff members is IHD Executive Director Kelly Roberts
Ph.D., and Jill Pleasant, MA, OTR/L Associate Director. Dr. Roberts is a researcher, tenured
professor and has many years’ experience with assistive technology. Ms. Pleasant has an
extensive occupational therapy background specializing in assistive technology. IHD is also the
home to the Phoenix based Arizona Technology Access Program (AzTAP), Arizona’s
designated Assistive Technology Act Program. Their staff members are also contributing AT
content area expertise to this project centering on matching product knowledge to consumer
needs.

A quick Google search for “assistive technology” will yield pages of results, but deciding on a
specific product that matches a particular person’s needs related to their type of disability or
limitation, what they want to accomplish, where they will use it and their budget is complicated.
Individuals with disabilities, older adults and family members are often unfamiliar with the
resources available to obtain assistive technology information and support.

With this information, it has led our team to work with our sponsors to create a solution that
involves us building a cross-platform mobile application which will help these individuals find the
Assistive Technology that will best suit their needs. This mobile app pairs individuals with
devices tailored to their specific difficulties and is able to offer them tips and resources so that
they can be best prepared to live their life to the fullest extent.

Following this idea, some of the key user level requirements that we had in this application are a
method for determining the best fit assistive technology, accessibility options, and the ability to
provide advice to the user. With this in mind we also had to consider the functional requirements
that describe what our system can do which include having the user be able to provide their
general limitations, allowing them to identify their trouble areas in the house/room, having the
user create a user profile, and having the app allow the user to save their favorite products they
have viewed. Then our performance requirements which will help our system achieve those
functional requirements will be to have the app sync to the database regularly, have the app
accommodate color blindness and screen readers, and to have the app be able to perform a
query or display a timeout in less than 10 seconds. One more thing to consider is the
environmental constraints that we may face which mainly includes being HIPAA compliant for
user privacy.

With all of this in mind the rest of this document will serve as a guide as to how this software will
be implemented and the specifics to the architecture of the application. There are many things
to consider when designing software and this will provide the reader a better understanding as
to our plan going forward.

lI. Process Overview

Over the course of the project our team mainly used the agile development process with some
influence from the waterfall process. Overall our process for design was to make small
incremental changes that would then be presented to the client. This allowed them to provide us
with useful feedback that we could use to target specific parts of the project that the client
wanted to be updated or changed. We continued this process throughout the project showing
our client our progress in each of our biweekly meetings.

We divided the project up into smaller modules that broke up our main tasks into pieces that
were exclusively for the website, exclusively for the mobile application, and ones that
overlapped and covered both. By doing this we were able to better target specific parts of the
website, or mobile application that needed to be developed next in order to provide our client
with a final product.

To help with the development of this project our team used several different apps and supporting
tools. The team used GitHub for our version control as well as our issue tracking later on in the
semester. Trello was used as our Kanban board where we kept an updated list of all
assignments, deliverables and coding tasks that were coming up. We used Microsoft Azure for
our cloud server used to host the website, Django for the backend of the website, SQLite3 for
the database, and Flutter for the mobile application. The team also used draw.io for making
UML diagrams, and erdplus.com for database modeling. And finally the team used Discord as
our main means of communication.

The team consisted of 4 team members. Seth Borkovec was our team leader, client
communicator, and served as the lead on the website portion of the project. Ethan Donnelly was
our team recorder, release manager, and served as the lead for the mobile application portion of
the project. Courtney Richmond was the team editor, product research manager, and also
maintained the team's website. Noah Baxter was the team architect. Overall the team roles
were only loosely followed and many team members would help out where it was needed.

The team held weekly meetings on Fridays that lasted for about two hours in which the team
would discuss the upcoming agenda and tasks would be assigned to each team member. The
team also implemented a protocol for rescheduling a meeting. The team agreed to have a
backup meeting time set aside on Sunday should the team be notified in advance that the
previously agreed upon Friday time would not work for one of more of the team members.

https://erdplus.com/

lll. Requirements

The acquisition process of our requirements was very straightforward. We were able to gather
what needed to be done for the project by having weekly meetings with our clients throughout
the fall semester. Research into the project itself and the technologies we could use to develop
this project also helped us further refine these requirements into what is and isn’t feasible with
the technology. Lastly, the development of documents mostly through the fall semester also
helped us to refine these requirements.

In this section, we will outline all of the project requirements for the project. We will begin by
reviewing the functional requirements which detail what the system can do. Next, we will review
the non-functional requirements, or the performance requirements, that specify how the

functional requirements are conducted. Lastly, we will go over the environmental requirements
which include constraints from external sources or laws.

A. Functional Requirements
1. Mobile App
a. The user needs to be able to provide their general limitations.
A limitation refers to any physical difficulty that may hinder a person's
ability to perform a specific task. The mobile application must be able to
gather this information from a user.

b. The user needs to be able to identify their trouble areas in their home.

By being able to navigate through a virtual home, a user will be able to
identify a specific room in their home that gives them the most trouble.

c. The user needs to be able to change rooms in a virtual house.
d. The app needs to remember user limitations.
After gathering this type of information from the user, the application must

be able to remember this for future reference, along with any identified
trouble areas in their home.

The user needs to be able to create a user profile.

A user profile is very standard in mobile application development. This
profile is what will be able to link the user to their limitations so that they
can be stored for future reference.

The user needs to be able to log in to the app.
The user will be able to recommend new AT devices.

In the event that a list of AT devices are being recommended to a user
and the user doesn’t see a specific device, they are able to send a
recommendation to the clients.

The app will have an option to give the user a fresh start and create a
new profile.

The app needs to give recommended AT based on the difficulty of a task
in a particular area of the home.

The app must take a user's physical limitations and identify trouble areas
in their home and generate a list of ideal AT devices suitable for their
needs.

The app needs to allow the user to save their favorite products they have
viewed.

The app needs to refer the user to local services contact information.

This could not only include local disability resources, but also resources
that help connect users with AT devices. This allows users another way of
identifying which AT devices are best for them.

The app will display a disclaimer that the recommendations are only
suggestions and that the benefit of recommendations is not guaranteed.

It is critical that the mobile app does inform users that any
recommendations made to the user are merely suggestions and user
satisfaction with these devices are not guaranteed.

. The app asks users if they would like to share their AT
recommendations/profile with their local resources via email or printer.

2. Website

a. The clients need to be able to manage the assistive technology inventory
in the database.

Database management includes a variety of tasks such as: adding,
removing, searching, or modifying the AT devices in the database. This
also includes the ability to add on additional categories to the AT devices
that will provide more information about them.

b. The client needs to be able to send a Qualtrics survey to the users.
In essence, the client will be able to send a link to a Qualtrics survey to
users, in which viewing that link will navigate them to a survey being
hosted on the Qualtrics framework.

c. The client needs to be able to view the results of a Qualtrics survey.

If users submit a survey, the clients will need to be able to review these
results in Qualtrics.

d. The client needs to be able to create administrative accounts on the
website used to manage the database.

e. The client needs to be able to remove administrative accounts on the
website used to manage the database.

B. Non-Functional Requirements
1. Mobile App
a. App needs to sync to the database regularly

To ensure that a user is getting the best information, the mobile app
needs to regularly sync with the database.

b. The app needs to accommodate color blindness.

Users will be able to select from a variety of color themes that provide
significant color contrast.

c. The app needs to accommodate screen readers and text-to-speech
The mobile app will be able to integrate the text-to-speech functionality
that exists on the users device (if they are using a device that supports
text-to-speech).

d. The app needs to accommodate voice input

Similar to the requirement above, the app will be able to integrate with the
operating system on the users device to allow for voice input.

e. The app will autosave the session in case the user leaves the app so that
they can pick up where they left off

f. The app needs to be able to perform a query or display a timeout in less
than 10 seconds.

2. Website

a. The administrative website should require user authentication

In order to protect access to the website, administrative users will use a
password to log in.

3. Database

a. The database needs to be secure from unauthorized access

Access to the database will require that a user is authenticated using
Django’s built in authentication system.

C. Environmental Requirements

1. HIPAA Compliance

Given that the nature of this project can associate a user with a physical limitation
that can be documented in health forms, the nature of this project must be HIPAA
compliant in that private medical information about a user is kept protected. Due
to this, the application will not be asking for nor recording private user information
such as their name or location. The application will not be taking in any medical
diagnoses, but merely offers a framework in which users can select from a
predefined list of limitations that they are experiencing. The application will also
be taking in a username. This user name can be whatever the user wants it to be
and will be associated with that user's active user profile. To ensure that this
information is protected and is HIPAA compliant, the username will be encrypted
before it is sent to the database for permanent storage.

V. Architecture and Implementation

In this section, we describe the architecture of the system to give you an understanding of what
components are involved, how they interact, and their purpose. We'll start by talking about the
overview, then we'll go into the details for each component, and finally we'll finish up with
differences from the project as-planned. Please refer to our Software Design document for even
greater details about the architecture. In the section following this one, we will talk about the
testing activities.

A. Architecture Overview

Our system involves two main components: a mobile application and a web server. The
main role of the mobile application is to provide AT recommendations to end users. To
do this, the mobile app relies on the web server to manage an inventory of AT. The web
server consists of a SQLite3 database, a Django website, and an Apache2 HTTP server
on an Ubuntu operating system hosted on a virtual machine in the Microsoft Azure
Cloud. The end users only interact with the mobile app. Our clients act as administrators
for the inventory using the website. Please refer to the diagram below (Figure 1:
Architectural overview) for a visual of the system.

IFlutter Framework

0

= Mobile Device— | Mobile Application :
/\\ i i Custom Protocol
User fommmmmmmmmm s
Azure Cloud Sarver
O Apache? :r_S_C_}_L_it_é 3 i
= Web Browse: > o i i
/ \ i Database !
Admin L ! !
sgi— S DU

Django Framework

S R ————
H 1

Website

Figure 1: Architectural overview.

10

The main role of the mobile application is to provide AT device recommendations to the
end user. The end user only interacts with the app and not with the website. The app
allows the user to create a profile to save information, but also has app settings that the
user can change to their preferences. The user can navigate through a virtual
representation of a home with different rooms and receive recommendations for AT
devices that will help them in those areas. To do this, the app needs to get information
from the database, but it doesn't connect to the database directly. Instead, it uses a
custom API we designed so that the request is forwarded to the Django framework.

The website provides a front-end for the administrators to manage the inventory of AT
devices in the database. Only the administrators interact with the website, and they can
add, remove, and edit AT devices in the inventory; as well as sending messages or
surveys to the end users via the database. The website is built in the Django framework
which has built-in libraries to interact with the database.

The database only interacts with the website via Django. The database inventories the
AT devices, messages, surveys, user profiles, and administrator profiles. No SQL
statements will be used, and instead everything is managed using the website.

The Cloud server provides a home for both the website and the database. We are using
Ubuntu as the operating system for the server. The software used to serve the website is
Apache?2 which serves the Django-based website using the module WSGI. Apache?2
does not handle any requests itself and instead forwards all requests to the
Django-based website.

The communication between the mobile application and the website uses a custom
protocol we developed for secure communication which relies on a unique ID and key
pair. Initially, the app has no ID or key. When the app is first run, it sends a predefined
default ID and key pair to the server to initiate a handshake. The server then assigns the
unique ID and key pair and returns these to the app. The app sends this new pair back
to the server for verification that they are correct and saves it to the app's permanent
storage after the server acknowledges it. Every communication between the app and
server then requires the unique ID and key pair for authentication.

The overall architecture is a server-client relationship where there is one server and
many clients. The custom protocol we developed between the app and server is based
on the TCP 3-way handshake protocol for computer networks.

To provide a walk-through of the process, let's use an example. Suppose an end user on
the mobile application has selected a room in the house to get recommendations for.
The app will compile the user's declared physical limitations as set in their user profile on
the app and send that along with the location in the house, and the handshake ID and
key pair, to the website. The website first authenticates the request by verifying that the
ID and key pair are correct. If they happen to be incorrect, the website will respond with

11

a JSON object that has a "status" of "error." Otherwise, the website will use the provided
limitations (if any) along with the location in the house to create a list of AT that match.
This list has two tiers: one tier of AT that match only on location in the house, and
another tier that matches on both location and on limitations. The website compiles this
list as a JSON object and returns it as a JSSON response to the mobile app. The mobile
app parses the JSON object with the two-tiered list of AT, and presents them to the end
user as recommendations.

Next, we'll go into more details about these components.

12

B. Implementation

Here we provide a detailed design description for each module mentioned above. We
start with the mobile app, the website (which involves Azure, Apache2, and Django), and
then the database.

1. Mobile Application
The mobile application is designed in the Flutter framework to allow for
cross-platform builds for both iOS and Android.

a. Responsibilities:
(1) Providing an interface to the end user

Provides a visual interface as a mobile application for the end user.
The user can interact using touch and/or with accessibility
technologies.

(2) Giving AT recommendations

Gives recommended AT devices to the end user to help with a
problem area or difficulty based on the room or object and the user's
specified general difficulties.

(3) Navigating a virtual house with rooms

The user can touch/click on rooms in a virtual representation of a
house to view options for AT devices and get recommendations for
that room.

(4) Allows user to suggest new AT devices

If the user has used an AT device that may be helpful for others but
doesn't appear to be in the inventory, the user can suggest to the
admins that it be added.

(5) Creating a user profile

The user creates a user profile that stores their general difficulties,
app preferences, favorite AT devices, and past recommendations. The
user can also choose to delete their profile and create a new one.

13

(6) Provides information for local resources

Information about local organizations who can assist users with
professional advice about AT is stored in the website. The app needs
to provide this information to the end user.

(7) Interacts with the website when getting AT recommendations

Using input provided by the user when navigating rooms and their
general difficulties, the app will query the database using the admin
website. The results will be displayed to the user as
recommendations.

2. Website

The website is developed through Django that provides front-end access to the
database for administrators, and serves database information to the mobile app.

a) Responsibilities

(1) Provides administrative access to the database

Acts as a front-end website that will allow administrators to access
information stored in the database.

(2) Allows administrators to add, remove, or edit information stored in the
database

The website provides administrators the ability to add, remove, or edit
information about the AT devices that are stored in the database. It
also provides administrators with the ability to add additional
information to AT devices in the method of adding or removing
categories attached to them.

(3) Allows administrators to send messages and surveys to mobile app
users

Surveys can be created in sites that use a URL for the survey such as
Qualtrics. Messages and these survey URLs can be sent to the users
of the mobile phone. The Website will keep a history of sent
messages and surveys to view the results of the surveys.

14

(4) Defines the layout of the house

The house is organized by rooms and each room is organized by
room areas/objects. The admin can manage the organization of these
in the website by defining new entities and changing their
associations. This is directly reflected in the mobile app and how end
users navigate the house.

(5) Defines physical limitations that app users may have

To provide better recommendations, the admins can define limitations
or physical difficulties that the app user may be experiencing. When
defined here, they will be available to the mobile app user to select
from.

(6) Allows the admins to view app user suggestions

The mobile app users can create suggestions for AT devices to be
included in recommendations that get sent back to the website. These
suggestions are stored in the database and allow the admins to
review them.

(7) Provides a way to customize the wording of features in the app

The mobile app has a terms of service, financial assistance
information, and an auto-generated email for the user to share their
recommendations. The wording for each of these may need to be
changed without changing the source code.

(8) Administrator management

The website gives administrators the ability to create, delete, or
disable administrative accounts.

3. Database

The database is created in SQLite3 and is accessible to the mobile app only
through the website.

15

a) Responsibilities

(1)

(2)

()

(6)

(7)

AT Inventory

Stores information about each AT device in the inventory. An AT
device can be associated with a room, room area/object, and/or with a
limitation. These are provided in the app as recommendations.

Advice and Tips

Similar to AT Inventory but these are not for devices. These can be
associated with a room or room area/object only. These are provided
in the app alongside the AT recommendations.

Rooms

Allows admins to manage the custom organization of a home for all
mobile app users. This affects how app users navigate the house to
get their recommendations.

Room Areas/Objects

These provide a way for administrators to divide a room into smaller
areas or objects inside the room. It helps the app user to get more
specific recommendations. A room area/object can be associated with
multiple rooms such as how there can be a sink in the kitchen and a
sink in the bathroom.

Limitations

These are the general physical difficulties that the app users may be
experiencing. An app users selects from these in their profile on the
mobile app to get better recommendations.

Messages and Surveys

These are created in the website and sent to all mobile app users.
The difference between a message and a survey is that a message
does not include a URL link. If a message or survey is deleted on the
website, it is no longer visible to the mobile app users either. However,
mobile app users can hide messages and surveys independently.

App User Suggestions

These are suggestions for AT devices to be included in the AT
inventory. Only app users can create a suggestion.

16

(8) State Resources

Information about organizations and other local resources for each
state are stored here. These are viewed by the app users when they
want to find their local resources.

(9) Other Configuration

This stores other miscellaneous information such as the wording for
the app terms of service, grant information, the wording of the email
and web page for sharing recommendations, extra custom categories
for the AT, and defining the relative prices for AT.

4. Apache2

5.

This is the HTTP server that directly responds to HTTP requests from both the
mobile app and administrators who are using the website. This uses a module
named WSGI to serve the web files that are created in Django.

a) Responsibilities
(1) Serve HTTP requests

Forwards HTTP requests from HTTP clients to the Django website,

and forwards HTTP responses from the Django website to the HTTP
clients.

(2) Log files
Maintains log files for HTTP accesses and errors.

Azure Cloud Server and Virtual Machine

Our virtual machine is hosted in Microsoft's Azure Cloud Server. The virtual
machine uses Ubuntu Linux as the operating system on which Apache2, the
Django website, and the SQLite3 database are located.

17

C. As-Planned Versus As-Built

When we started planning this project, we were unaware of our capabilities, and we
planned an ambitious timeline. Some features were not included in the as-built
version because we did not have enough time to implement them or were too
complicated to be solved within the project time frame. On the other hand, some
features were built but were not originally planned. In this case, these features were
easy enough to be included and important enough to our clients to replace another
feature in our development cycle. We'll start by discussing the features that were
originally planned but not built, and then we'll finish with features that were built but
not part of the original plans.

1. Features Planned But Not Built

a)

Mobile app user can change the color theme in the app

The issue with this feature is that the app is given the theme when the
app first loads, and this theme cannot be changed dynamically very
easily. There were third-party packages to help with this but we did not
have enough time in the development to understand and implement them.

Mobile app user can change their avatar

As this was a low-priority feature, we did not implement it because we did
not have enough time. It was considered to be low priority because it
does not have any influence on the functionality of the app.

Mobile app user can rate their AT recommendations

As with the other features left out, we ran out of time in the development
cycle to implement this. It was also considered less important than the
other features that were planned.

2. Features Built But Not Planned

a)

The mobile app gives advice and tips along with AT recommendations

Being able to help end users by providing tips and advice around the
home was important to our clients. It was also an easy feature to
implement because the functionality is mostly the same as the regular AT
inventory. The one thing it did change was that the recommendations in
the app became a screen where the user could switch between the AT
devices and the advice and tips.

18

b)

The extra categories for the AT devices can be shown in the app

Having another category for an AT device isn't very useful unless it can be
shared with the mobile app user. To add this feature, we had to change
how the recommendations were compiled in the website and how the
mobile app parsed the recommendations JSON. The JSON with the
recommendations also includes another JSON for these
dynamically-created custom categories as well.

Mobile app users can hide messages and surveys

As an app user, it is important to be able to mark messages and surveys
as viewed, and also to dismiss them. This required some interaction to be
built for the messages in the app. If the app user taps on a message, it is
marked as read. The app user can swipe the message off the screen to
permanently hide it.

Mobile app users are shown a "terms of service" agreement which can be
customized by the admins

We did have plans to include some kind of user agreement for the mobile
app, but it was decided later that our clients would need to customize this
and update the wording without changing the source code. This was built
into the database and the mobile app gets the terms of service from the
website when it loads the app.

Mobile app users are shown extra information in the resources tab

Simply providing a list of local state organizations that can assist the
users with professional advice about AT is supplemented by some
additional information that our clients can customize. This allows our
clients to include anything from how to get help with financing AT
purchases to general advice.

Admins can change how relative prices are categorized

The relative prices of AT was decided later on to become a style often
used for restaurants where more "$" characters represent more
expensive restaurants. Our clients wanted full control over how many
levels exist as well as wording to be associated with each level.

19

g) Admins can customize the wording for the email created when sharing
recommendations in the app

The wording in the email when sharing AT recommendations with
someone else needs to be customized without changing the source code.
Our clients wanted to be able to have this ability, so we included it in the
website. The app gets this information when it loads.

Now that we've covered the architecture of the system, along with some detail about the
implementation, the next section will discuss testing of the system and its components.
Again, for more details about the architecture of this project, please refer to our Software
Design document.

20

V. Testing

The team created an extensive in-depth testing plan that covered unit testing, integration
testing, as well as usability testing. For our unit testing we created driver functions written in the
same language. These driver functions test the boundaries for inputs, and validate outputs. We
used a "black box" approach where we knew the inputs and expected outputs, but we are not
concerned with the inner workings of the functions. Our tests will also check for proper handling
of errors by purposefully giving inputs outside of the expected range when appropriate. For the
website on the Django framework, these driver functions will be written in Python. For the mobile
application which is in the Flutter framework, these driver functions will be written in Dart. we
then split up the functions in our code into modules covering categories of responsibilities that
each set of functions had. We then broke this list down farther into functions for the Web
application, functions for the mobile application, and global functions. For each module we
provided a description of what this group of functions does, the boundary values, as well as
some example values, and finally outlined what the expected behavior was. If you would like a
more detailed look into exactly what each of our modules consisted of please refer to our more
in depth Software Testing document.

To determine what to test for integration testing, we needed to consider what major components
interact with other components. In our project, these include the database, the website, and the
mobile application. The database and the mobile application only interact with the website and
not directly with each other. Since the interactions between the website and the mobile
application occur over a network, we needed to test for situations involving network connectivity
and security. The interaction between the website and the database needed to be tested for
data correctness and security. Security can be tested by trying to modify the database or
sending an HTTP request without correct authentication. Data correctness in the database is
tested by making queries in the website and looking at the records to make sure they are
correct. Connectivity over the network can be tested by simulating network problems.

A. Website and Database Integration

The website and the database communicate using Django and its built-in database
libraries. The website has full control over the data manipulation and organization,
therefore it is important to test that the website is modifying the database correctly.

To test the integration of these two components, we can utilize the website functions by
sending test data. These functions should manipulate the database in an expected
manner and we can verify correctness using the SQLite command-line tools to view the
data. We can also input data directly into the database using these same tools and verify
that the data is being extracted correctly by the website by looking at the data returned
from the website functions. Correctness can be directly observed if the data input into
the database or returned from the website functions match what is expected.

21

Since the website is the only interface to the database, there can be no other point of
access. We will also know about any errors or problems with the database integration
with the website because the Django server will not start if it detects a problem in the
logic of the functions. There are rare cases in which functions could provide bad data or
faulty logic when interacting with the database in which case we will implement try-catch
clauses to prevent a crash.

. Mobile Application and Website Integration

As mentioned above, the website is the only point of interaction with the database, so
the mobile application needs to interact with the website. This interaction occurs over a
network which provides for some challenges with connectivity. Since the device the
mobile application is running on may not have network connectivity guaranteed, the
integration between these two needs to account for disconnects and timeouts in addition
to the normal data validation.

To test the behavior of each the mobile application and the website in conditions of poor
or no network connectivity, we can simulate the conditions by forcibly disabling
responses from one or the other. In either case, there should not be places in the app or
in the website where it hangs while waiting for the response that will never come.
Instead, after a timeout, it should gracefully back down to what it was doing with a
message to the user on the app explaining that there are problems with network
connectivity and to try again later.

To test the normal behavior when network connectivity is not a factor, we use the
functions in both the mobile application and in the website that deal with these
interactions. We can use debugging logs to verify that the interactions were successful
and that the data is correct.

And finally we created a plan for conducting usability testing with both our clients and
end users to get a better understanding of how both th